Inverse Spectral Problem and Peakons of an Integrable Two-component Camassa-Holm System

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of the μ-Camassa-Holm Peakons

The μ-Camassa–Holm (μCH) equation is a nonlinear integrable partial differential equation closely related to the Camassa–Holm equation. We prove that the periodic peaked traveling wave solutions (peakons) of the μCH equation are orbitally stable.

متن کامل

Stability of the mu-Camassa- Holm Peakons

The μ-Camassa-Holm (μCH) equation is a nonlinear integrable partial differential equation closely related to the Camassa-Holm equation. We prove that the periodic peaked traveling wave solutions (peakons) of the μCH equation are orbitally stable. AMS SUBJECT CLASSIFICATION (2000): 35Q35, 37K45.

متن کامل

Periodic Conservative Solutions for the Two-component Camassa–holm System

We construct a global continuous semigroup of weak periodic conservative solutions to the two-component Camassa–Holm system, ut − utxx + κux + 3uux − 2uxuxx − uuxxx + ηρρx = 0 and ρt + (uρ)x = 0, for initial data (u, ρ)|t=0 in H1 per ×Lper. It is necessary to augment the system with an associated energy to identify the conservative solution. We study the stability of these periodic solutions by...

متن کامل

Stability of peakons for the generalized Camassa - Holm equation ∗

We study the existence of minimizers for a constrained variational problems in H(R). These minimizers are stable waves solutions for the Generalized Camassa-Holm equation, and their derivative may have a singularity (in which case the travelling wave is called a peakon). The existence result is based on a method developed by the same author in a previous work. By giving examples, we show how ou...

متن کامل

Stability of the Camassa-Holm peakons in the dynamics of a shallow-water-type system

The stability of the Camassa-Holm (periodic) peakons in the dynamics of an integrable shallow-water-type system is investigated. A variational approach with the use of the Lyapunov method is presented to prove the variational characterization and the orbital stability of these wave patterns. In addition, a sufficient condition for the global existence of strong solutions is given. Finally, a lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Mathematical Physics

سال: 2021

ISSN: 1776-0852

DOI: 10.1080/14029251.2018.1452674